
The least-control principle for local learning at equilibrium
Alexander Meulemans*, Nicolas Zucchet*, Seijin Kobayashi*, Johannes von Oswald, João Sacramento

Selected as
an oral

Backpropagation in the brain?

state update

error update

weight update

Issues:
• weight transport
• clocked two-phased 

algorithm
• activity not changed
• no recurrence allowed
• differentiability

Desiderata for our theory

Evidence from biology that we account for
1. local and activity-dependent learning rules
2. the brain is recurrently connected

Reasonable assumptions for learning in the brain
1. gradient-based learning
2. single-phase learning
3. feedback modulation to embed credit assignment 

information in the neural activity

Equilibrium neural networks

From feedforward networks to equilibrium networks:

deep learning description

leaky-integrate and fire until 
equilibrium

more general connectivity 
patterns (possibly recurrent)

Controlling neural activity

The least-control principle

controller objective of the controller

controlled dynamics

The controller pushes neural activity 
to some target value

We learn by minimizing the amount 
of control needed at equilibrium

minimize amount of control 

controlled equilibrium

correct output 

Step 1: find an optimal control      and an optimally controlled 
state
How to compute it? see right panel

Step 2: take a gradient descent step in the least-control 
objective            w.r.t. the parameters

 single-phased, local, activity-dependent, gradient-based!

Connection to existing theories

If the model has enough capacity, the update will decrease 
the amount of optimal to zero and solve the learning task

The theory also applies to any system reaching an 
equilibrium (e.g. meta-learning)

Direct linear feedback

Dynamic inversion

Results

Feedforward (test acc., 
%)

Recurrent (test acc., %)

MNIST CIFAR-10 MNIST CIFAR-10

LCP (linear feedback) 97.73 ± 0.07 / 97.70 ± 0.11 /

LCP (dynamic inversion) 98.11 ± 0.07 77.28 ± 0.10 97.58 ± 0.16 80.26 ± 0.17

LCP (dynamic inversion 
+ learned feedback)

98.14 ± 0.09 77.16 ± 0.10 97.75 ± 0.11 /

(R)BP 98.29 ± 0.14 77.58 ± 0.14 97.87 ± 0.19 80.14 ± 0.20

fully-connected 
equilibrium 

RNN

convolutional 
equilibrium RNN

convolutional 
network

2-hidden-layer 
feedforward 

network

output controller that forces 
the output to be at target 
value

the control signal is directly 
fed back to hidden states

is learned using local 
Hebbian rules

approximate optimal control in general, exact for one data 
point or for linear networks 

network and controller 
dynamics jointly converge 
to an exact optimal control

“enhanced” version of (R)BP

feedback weights can be 
learned too
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augmented energy:

weak nudging perfect control

equilibrium propagation predictive coding
least-control principle
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recursion is a powerful algorithmic primitive

such recurrent models can be more memory 
efficient
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