Online learning of long-range dependencies

Nicolas Zucchet*, Robert Meier*, Simon Schug*, Asier Mujika, João Sacramento

Summary

We propose a new rule for learning RNNs online that

- 1. Leverages element-wise recurrence for accurate gradient estimation
- 2. Backpropagate instantaneous error signals across the network hierarchy
- 3. Scales to challenging tasks that require modeling longrange dependencies
- 4. Has same time complexity as backpropagation-throughtime while only doubling memory in the forward pass
- 5. Helps understanding learning in the brain

The problem with backpropagation-through-time

They become a problem when:

- moving to low memory hardware (brain / neuromorphic computing)
- we cannot wait the end of a sequence to update the parameters (e.g. RL)

Real-time recurrent learning

RTRL is forward-mode differentiation applied to RNNs

- activity update: $h_{t+1} = f(h_t, \theta)$
- sensitivity update: $\frac{\mathrm{d}h_{t+1}}{\mathrm{d}\theta} = \frac{\mathrm{d}h_{t+1}}{\mathrm{d}h_t} \frac{\mathrm{d}h_t}{\mathrm{d}\theta}$
- gradient calculation: $\frac{\mathrm{d}L}{\mathrm{d}\theta} = \sum_{t} \frac{\partial L_t}{\partial h_t} \frac{\mathrm{d}h_t}{\mathrm{d}\theta}$

Gradients can be calculated online + constant memory (w.r.t T)! But O(n³) memory complexity and O(n⁴) operations Our work: improved complexity by leveraging modularity

Wiliams and Zipser, Neur. Comp. 1989

Tallec and Ollivier, ICLR 2018; Murray, eLife 2019; Bellec, Nat. Comm. 2020; Menick et al., ICLR 2021; Mozer, Comp. Sys. 1989; Orvieto et al., ICML 2023

layer L

layer L-

Independent recurrent mechanisms

Previous work either:

1. approximates the sensitivity update to make RTRL tractable 2. remarks that element-wise recurrence makes RTRL tractable Point 2 is not as limiting as it may seem! (deep SSM, LRU)

Example of IRM: the linear recurrent unit (LRU)

of the size of the parameters ($O(n^2)$): $e_{t+1}^{\lambda} = \lambda \odot e_t^{\lambda}$

$$\Delta \lambda \propto \sum_{t=1}^{T} \delta_t \odot e_t^{\lambda}$$
$$e_{t+1}^B = \operatorname{diag}(\lambda) e_t^B + 1 x_{t+1}^{\top}$$
$$\Delta B \propto \sum_{t=1}^{T} \operatorname{diag}(\delta_t) \odot e_t^B$$

Independent recurrent modules may be a useful inductive bias for the brain to be able to learn online

Spatial backpropagation across layers

Stacking multiple layers is key to achieving good performance We enable it by leveraging spatially backpropagated errors, i.e. approximate $d_{h_t}L \approx \partial_{h_t}L_t$

Exact gradient for the parameters of the last layer

Approximate gradients for the rest

Understanding the bias in practice

Results

Long-range arena benchmark, test accuracies reported below Adjustments compared to traditional setting: no batch norm, loss at every timestep (averaging all the digits so far)

	sCIFAR	IMDB	ListOPS	sCIFAR (lin. RNN)
Spatial BP	58.20 ± 0.70	83.50 ^{± 0.20}	32.02 ± 0.20	50.63 ± 0.23
1-step TBPTT	60.01 ± 1.26	84.04 ^{± 0.47}	31.88 ^{± 0.59}	50.53 ^{± 0.43}
Ours / SnAp-1	79.59 ± 1.01	86.48 ^{± 0.41}	37.62 ^{± 0.68}	63.71 ^{± 0.33}
BPTT	83.40 ± 1.54	87.69 ^{± 0.39}	39.75 ± 0.17	65.23 ^{± 0.56}

Code

5	
2	l 5
5	

Synthetic memory task (7-bits pattern of length 20 to remember)

Report training loss and cosine similarity with true gradient (averaged over layers)

A, B: vary the depth of the network Bias increase with depth as approximation we make becomes cruder but still enough to benefit from depth

C, D: vary the initial recurrence
eigenvalues
Bias increase as eigenvalues get closer
to 1 but still benefit from it (for this task)

- E, F: compare against other algorithms
- spatial backpropagation (online)
- 1-step truncated backprop. (online)
- exact gradient (BPTT, offline)

Additional experiments in the paper showing that IRMs improve online learning performance:

- On a linear RNN: approximate RTRL is lagging behind BPTT (more than ours)
- On a GRU: approximate RTRL perform competitively for 1 layer but does not benefit from depth